logo
Inicio Noticias

Temperature Humidity Test Chamber Manufacturing Process !

China GUANGDONG KEJIAN INSTRUMENT CO.,LTD certificaciones
China GUANGDONG KEJIAN INSTRUMENT CO.,LTD certificaciones
Kejian que la calidad universal de la máquina de prueba es el mejor, servicio de la después-venta es también grande.

—— Óscar Vargas

La máquina de prueba de papel es una del mejor producto.

—— Kritsana Praikongkadhrama

Estoy en línea para chatear ahora
Compañía Noticias
Temperature Humidity Test Chamber Manufacturing Process !
últimas noticias de la compañía sobre Temperature Humidity Test Chamber Manufacturing Process !
The manufacturing process of a Temperature Humidity Test Chamber (THC) is a systematic, multi-stage workflow that integrates mechanical engineering, electrical control, thermal dynamics, and precision assembly. It focuses on ensuring the chamber’s core performance—such as temperature/humidity control accuracy, environmental uniformity, and operational safety—while meeting industry-specific standards (e.g., ISO 10281, ASTM D4359). Below is a detailed breakdown of the key manufacturing stages:

1. Pre-Manufacturing: Design & Material Sourcing

This stage lays the foundation for the chamber’s performance and reliability, requiring close collaboration between design engineers, material specialists, and quality teams.

1.1 Technical Design & Simulation

  • Requirements Analysis: First, engineers clarify the chamber’s target specifications based on customer needs or industry standards, including:
    • Temperature range (e.g., -70°C to +180°C for standard models, -196°C for cryogenic models).
    • Humidity range (e.g., 10%–98% RH, or ≤5% RH for low-humidity versions).
    • Chamber volume (benchtop 50L, floor-standing 1000L, or walk-in 50m³).
    • Special functions (e.g., UV irradiation, salt spray, vacuum).
  • 3D Modeling & Thermal Simulation: Using software like SolidWorks, AutoCAD, or ANSYS, engineers design the chamber’s structure (outer shell, inner liner, insulation layer) and simulate:
    • Thermal uniformity: Ensuring no “hot spots” or “cold zones” via airflow duct design (e.g., optimizing fan placement and baffle angles).
    • Heat/cold retention: Calculating the thickness of insulation materials (e.g., polyurethane foam, vacuum panels) to minimize energy loss.
    • Humidity distribution: Simulating water vapor diffusion to avoid condensation on sample surfaces.
  • Control System Design: Develop the PLC (Programmable Logic Controller) program and HMI (Human-Machine Interface) to support multi-segment test cycles, data logging, and safety alarms.

1.2 Material Sourcing & Quality Inspection

Only high-performance, corrosion-resistant, and temperature-stable materials are selected to withstand extreme test environments:
Component Material Selection Reason for Choice
Inner Liner 304/316 Stainless Steel Resists rust, moisture, and chemical corrosion (critical for high-humidity/salt spray tests).
Outer Shell Cold-rolled steel (with powder coating) High structural strength; powder coating (epoxy resin) prevents external rust.
Insulation Layer Polyurethane foam (density ≥40kg/m³) or vacuum insulation panels Low thermal conductivity (≤0.022 W/(m·K)) to maintain stable internal temperatures.
Cooling System Copper tubes (for refrigeration circuits) + eco-friendly refrigerants (R410A/R513A) Copper has high thermal conductivity; refrigerants comply with environmental standards (low GWP).
Humidification System Titanium alloy evaporator or stainless steel water tank Titanium resists scale buildup; stainless steel ensures water cleanliness (critical for pharmaceuticals).
Fans & Motors High-temperature-resistant DC brushless motors Operate stably at +180°C; low noise and long lifespan.

2. Core Component Manufacturing

Key subsystems (e.g., refrigeration, humidification, air circulation) are pre-assembled and tested individually to ensure they meet performance benchmarks before integration.

2.1 Refrigeration System Manufacturing (Critical for Temperature Control)

The refrigeration system is responsible for cooling the chamber to low temperatures (down to -196°C for cryogenic models) and works with heaters to adjust temperature dynamically.
  • Compressor Assembly: Select scroll compressors (for standard models) or cascade compressors (for ultra-low temperatures) and assemble them with copper tubes (brazed via nitrogen protection to avoid oxide buildup in tubes).
  • Condenser & Evaporator Production:
    • Condenser: Bend copper tubes into a finned structure (aluminum fins for heat dissipation) and pressure-test (1.5x working pressure) to detect leaks.
    • Evaporator: For low-temperature models, use spiral copper tubes to enhance heat exchange efficiency; coat with anti-frost materials to prevent ice buildup.
  • Refrigerant Charging: Inject the precise amount of refrigerant (e.g., R410A) into the closed circuit and test for leaks using a helium leak detector (leak rate ≤1×10⁻⁹ Pa·m³/s).

2.2 Humidification & Dehumidification System Manufacturing

This system controls humidity by adding or removing water vapor:
  • Humidifier Production: For steam humidifiers, fabricate stainless steel heating tubes (with anti-scale coatings) and assemble them into a water tank. Test steam output rate (e.g., 2kg/h for 1000L chambers) and ensure uniform vapor distribution.
  • Dehumidifier Production: Use refrigeration dehumidifiers (cooling coils to condense moisture) or desiccant dehumidifiers (silica gel for low-humidity models). Test dehumidification efficiency (e.g., reducing humidity from 98% to 10% RH in ≤1h).

2.3 Air Circulation System Manufacturing

Uniform airflow is essential for consistent temperature/humidity across the chamber:
  • Fan & Duct Production: Mold ABS plastic ducts (or stainless steel for high temperatures) into a “circular airflow” design. Install brushless fans and adjust blade angles via simulation to ensure airflow velocity (0.5–1.5 m/s) and uniformity (temperature difference ≤±2°C).
  • Baffle Installation: Attach adjustable stainless steel baffles to ducts to redirect airflow and eliminate dead zones (e.g., near the chamber door or
Tiempo del Pub : 2025-09-19 21:23:43 >> Lista de las noticias
Contacto
GUANGDONG KEJIAN INSTRUMENT CO.,LTD

Persona de Contacto: Miss. Silivia Zhang

Teléfono: 86-13925519875

Fax: 86-0769-28638013

Envíe su pregunta directamente a nosotros (0 / 3000)

Máquinas de prueba universales

cámara extensible con el ISO, certificaciones de la temperatura alta-baja de 0.5~500mm/min los 40*40*70cm del CE

Tipo universal electrónico del piso del probador extensible de la columna doble para el alargamiento

Probador extensible universal material de empaquetado diseñado para el alargamiento de aislamiento

probador material universal de 20Ton 750m m, equipo hidráulico de la resistencia a la tensión de UTM

Equipo de prueba de adherencia de cáscara

1 estándar electrónico de la prueba de adherencia de la cinta del rodillo 2kg Astm FINAT

Máquina de la prueba de la tachuela de la bola de balanceo de la bola del probador de adherencia de la cinta de KEJIAN

Equipo de prueba de la fuerza de la cáscara de ASTM D2979, 0-100N máquina de la prueba de la cáscara de 90 grados

10 pesos SS conectan la máquina de la prueba de laboratorio de las placas 1KG/el probador de la retentividad de la cinta adhesiva

cámaras de simulación medioambiental

Cámara de la prueba de envejecimiento de las cámaras de la prueba del ambiente Probador de envejecimiento ULTRAVIOLETA de la placa plástica

tablero plástico rígido transparente 220v 50hz del Pvc de la máquina del probador del espray de sal 270l

Aire caliente que completa un ciclo económico de la cámara de la prueba de la humedad de la temperatura de sequía modificado para requisitos particulares

Solicitar una cotización

E-Mail | Mapa del sitio

Política de privacidad | China Bueno Calidad Máquinas de prueba universales Proveedor. © 2017 - 2025 GUANGDONG KEJIAN INSTRUMENT CO.,LTD. All Rights Reserved.